
OQF: Oblivious Query Processing Framework

Background: protecting data access patterns in cloud

Problem: range and kNN queries

Objective: maximizing the overall query throughput

Efficient and Oblivious Query Processing for Range and kNN Queries
(Extended Abstract)

Zhao Chang1, Dong Xie2, Feifei Li3, Jeff M. Phillips4, Rajeev Balasubramonian4

1Xidian University, 2The Pennsylvania State University, 3Alibaba Group, 4University of Utah

1. We propose an oblivious query framework (OQF).

2. Our objective is to process range and kNN queries with

high throughput.

3. The main idea is to integrate indices into ORAM and

leverage batch processing and ORAM caching.

4. Extensive experimental evaluation has demonstrated the

effectiveness and efficiency of our method.

ORAM Data Structure

Secure Data Storage
Cloud Storage

Trusted

Untrusted get put

Oblivious Query Framework

ORAM Protocol

ORAM Stash ORAM Cache

Client Client ClientClient

Results Queries

Coordinator

FRAMEWORK

INTRODUCTION

Figure 1: Storage cost against raw data size.

(b) coordinator memory size.(a) cloud storage size.

EXPERIMENTAL EVALUATION

Figure 2: Performance of R-tree range query against raw data size.

(b) communication cost.(a) query throughput.

CONCLUSION

OBLIVIOUS INDEX

OPTIMIZATIONS

g queries

…query

sequence

… … …… …

… …… …

mi blocks

g queries g queries

s batches

batch 1 batch i batch s

……

…………

block access

sequence

21

4 1 1 5 3 4 4 1 2

batch 1 batch 2 batch 3

32

4cacheCoordinator

Cloud
cloud storage

hit: 1 miss: 3

block access sequence

Caching Strategy: batch-FIF (LRU+FIF)

 (1) evict the block that will not be accessed within current

batch using LRU strategy

 (2) evict the block that will not be accessed until farthest

in future (FIF) within current batch

INTEGRATING INDEX INTO ORAM

posMap

cache+stash
Path-ORAM

= data/index block

= slot

= dummy block

17

0 1 2 3 4 5 6 7 8 9

15 16

10 11 12 13 14

encryption key

data

index

B-Tree

Children Keys Children PIDs

of ChildrenIsLeafPID

Children PosTags

PosTag
B-Tree

Logical B-Tree

root

leaf

child

rootPosrootID

Client

2: retrieve child

3: retrieve leaf

4: write back the blocks

along the path

1: retrieve root

