
OQF: Oblivious Query Processing Framework

Background: protecting data access patterns in cloud

Problem: range and kNN queries

Objective: maximizing the overall query throughput

Efficient and Oblivious Query Processing for Range and kNN Queries
(Extended Abstract)

Zhao Chang1, Dong Xie2, Feifei Li3, Jeff M. Phillips4, Rajeev Balasubramonian4

1Xidian University, 2The Pennsylvania State University, 3Alibaba Group, 4University of Utah

1. We propose an oblivious query framework (OQF).

2. Our objective is to process range and kNN queries with

high throughput.

3. The main idea is to integrate indices into ORAM and

leverage batch processing and ORAM caching.

4. Extensive experimental evaluation has demonstrated the

effectiveness and efficiency of our method.
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Figure 1: Storage cost against raw data size.

(b) coordinator memory size.(a) cloud storage size.

EXPERIMENTAL EVALUATION

Figure 2: Performance of R-tree range query against raw data size.

(b) communication cost.(a) query throughput.
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Caching Strategy: batch-FIF (LRU+FIF)

 (1) evict the block that will not be accessed within current

batch using LRU strategy

 (2) evict the block that will not be accessed until farthest

in future (FIF) within current batch

INTEGRATING INDEX INTO ORAM
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